

## AGRONOMY TECHNICAL NOTE – MAY 2014 HOW MUCH MAIZE HAVE I GOT? JOHN MORGAN – MGA OFFICE

#### Introduction

During the summer of 2012, the tough year that most of us will want to forget, the MGA produced a mailing which enabled growers to better quantify the volumes of maize they would harvest and as a result make them better able to think about alternatives to fill the clamps, sooner rather than later. The technical note proved very useful and for this reason we have reproduced it here to aid those keen to better monitor crop performance as this year progresses.

The key elements of this yield forecasting tool are established plant population and compensatory growth.

#### Plant populations

Actual plant population is best calculated by counting the average number of viable plants per 10 metres of one row and multiplying this number up to a field scale. This calculation has been tabulated in table 1 below. E.g. if there are on average 40.77 plants per 10m row length, the plant population per acre and per ha would be 22000 and 54362 respectively.

Table 1 Link between plants per 10 row length and plant population per hectare and per acre

| Plant populations |                |            |  |  |  |
|-------------------|----------------|------------|--|--|--|
| Plants/acre       | Plants/hectare | Plants/10m |  |  |  |
| 50000             | 123550         | 92.66      |  |  |  |
| 48000             | 118608         | 88.96      |  |  |  |
| 46000             | 113666         | 85.25      |  |  |  |
| 44000             | 108724         | 81.55      |  |  |  |
| 42000             | 103782         | 77.84      |  |  |  |
| 40000             | 98840          | 74.13      |  |  |  |
| 38000             | 93898          | 70.43      |  |  |  |
| 36000             | 88956          | 66.72      |  |  |  |
| 34000             | 84014          | 63.01      |  |  |  |
| 32000             | 79072          | 59.31      |  |  |  |
| 30000             | 74130          | 55.60      |  |  |  |
| 28000             | 69188          | 51.89      |  |  |  |
| 26000             | 64246          | 48.19      |  |  |  |
| 24000             | 59304          | 44.48      |  |  |  |
| 22000             | 54362          | 40.77      |  |  |  |
| 20000             | 49420          | 37.07      |  |  |  |
| 18000             | 44478          | 33.36      |  |  |  |
| 16000             | 39536          | 29.65      |  |  |  |
| 14000             | 34594          | 25.95      |  |  |  |
| 12000             | 29652          | 22.24      |  |  |  |

Example set out above is shown in red

#### **Compensatory Growth**

Little data is available as to the potential for compensatory crop growth of maize to make up the difference in yield between crops with low and target plant populations. That said, it is generally accepted that some form of compensatory growth does take place.

Table 2 (over the page), based on a target yield of 18 tonnes per acre (44.5 tonnes/ha), shows how yield losses can be mitigated by compensatory growth. Please note that the rates of compensatory growth are our guestimates and are not based on published data. They should be used as a guide only.

### Weather related yield penalties

In addition to any compensatory growth adjustments, the likely impact of past and present weather also needs to be taken into account when forecasting final crop yields. In addition to the estimates for compensatory growth, Table 2 also shows the potential impact of a 15% and 30% weather related yield reduction. The figures can be used as a

guide as to the impact of poor weather on yield potential. Using table 2, it is possible to forecast a yield for field with different plant populations, taking account of compensatory growth estimates and weather impacts. E.g. a 40000 plant per acre crop will yield in the region of 11088 kg per acre, assuming a 30% weather related yield adjustment.

Table 2 Plant population and weather factors combined to show potential overall impact on maize yield using two 15% and 30% weather related yield reductions.

| Overall Crop Yield  |                     | Yield based on                  | Plant populations |                |
|---------------------|---------------------|---------------------------------|-------------------|----------------|
| 15% yield reduction | 30% Yield reduction | compensatory<br>growth at lower | Plants/acre       | Plants/hectare |
| Kg/acre             | Kg/acre             | plant populations<br>(kg/acre)  |                   |                |
| 15300               | 12600               | 18000                           | 50000             | 123550         |
| 14982               | 12338               | 17626                           | 48000             | 118608         |
| 14639               | 12056               | 17222                           | 46000             | 113666         |
| 14272               | 11753               | 16790                           | 44000             | 108724         |
| 13880               | 11431               | 16330                           | 42000             | 103782         |
| 13464               | 11088               | 15840                           | 40000             | 98840          |
| 13023               | 10725               | 15322                           | 38000             | 93898          |
| 12558               | 10342               | 14774                           | 36000             | 88956          |
| 12069               | 9939                | 14198                           | 34000             | 84014          |
| 11555               | 9516                | 13594                           | 32000             | 79072          |
| 11016               | 9072                | 12960                           | 30000             | 74130          |
| 10453               | 8608                | 12298                           | 28000             | 69188          |
| 9865                | 8124                | 11606                           | 26000             | 64246          |
| 9253                | 7620                | 10886                           | 24000             | 59304          |
| 8617                | 7096                | 10138                           | 22000             | 54362          |
| 7956                | 6552                | 9360                            | 20000             | 49420          |
| 7271                | 5988                | 8554                            | 18000             | 44478          |
| 6561                | 5403                | 7718                            | 16000             | 39536          |
| 5826                | 4798                | 6854                            | 14000             | 34594          |
| 5067                | 4173                | 5962                            | 12000             | 29652          |

<sup>\*1%</sup> compensatory growth increase assumed as plant populations drop by 1000 plants per acre.

#### Impact on maize quality

As well as the yield implications of reduced plant populations and the weather, both factors will also have an impact on maize silage quality. Lower plant populations tend to allow more light into a crop, with the result that cobs tend to be larger and more mature at harvest. Larger, mature cobs tend to increase the starch levels of crops. In contrast, crops affected by adverse weather tend to be slow to mature and while cobs may be present, grain maturity by be delayed or

not happen at all, with the result that starch percentages in the silage are low.

# Wholecrop to fill any shortfall in yield and quality?

Members will be aware of the excellent feed characteristics of wholecrop cereal silage. Cattle find the silage very palatable and its similar starch, energy and protein balance to maize silage, make it an ideal addition, or in difficult years a good substitute.

<sup>\*\*</sup> Figures in red represent the example set out above.

With wholecrop harvests typically happening during mid and late July, mid June is the time to review your maize crops and work out how much, if any, wholecrop is needed to fill a forage gap.

Table 3 shows the typical yield of wholecrop silage. The numbers contained in the table can be used to calculate how much cereal land needs to be wholecroped to fill an individual farms silage shortfall. The yield estimates are based on average crops of cereals. With cereal crops looking particularly

well at the time of writing, these averages should be on the safe side.

To work out how much, if any wholecrop you may need, first workout using table 1 and 2 above how much different your estimated maize yield is from your original yield target. Next step, use table 3 to work out how much wholecrop you need to cut to make up the difference. Remember that due to maize and wholecrop being relatively similar forages, you can usually clamp them together. That said, urea treated crops should be kept separate from fermented silages.

Table 3 Wholecrop Cereal Silage yield data on a Dry and Fresh Weight Basis

| Crop   | DM yield (t/ac) | DM yield (t/ha) | Fresh Wt yield (t/ac) | Fresh Wt yield (t/ha) |
|--------|-----------------|-----------------|-----------------------|-----------------------|
| Wheat  | 4.9             | 12              | 12-14                 | 30-35                 |
| Barley | 4               | 10              | 10-12                 | 25-30                 |

#### Harvesting wholecrop

When harvesting wholecrop, the Dry Matter (DM) of the cut crop is important. Use the guide below to improve your chances of getting the DM right. While much wholecrop is made without an additive or preservative, the MGA Additive Data sheets should provide you with an up to date list of what is currently available.

Table 4 Wholecrop Cereal DM in field crop assessment guide

| DM%     | Crop colour                            | Grain texture                                                         |
|---------|----------------------------------------|-----------------------------------------------------------------------|
| 32 – 35 | Green                                  | Soft Brie; some grains milky                                          |
| 36 - 38 | Green                                  | Soft Brie                                                             |
| 39 - 42 | Green, ears turning yellow             | Soft Cheddar                                                          |
| 43 - 46 | Green going yellow                     | Soft Cheddar                                                          |
| 47 - 54 | Yellow, hint of green                  | Hard Cheddar, with some harder grains                                 |
| 55 - 65 | Yellow, hint of green on stem          | Hard Cheddar, with some grains impossible to penetrate with thumbnail |
| 66 - 70 | Yellow/brown, traces of green at nodes | Very hard, with grains impossible to penetrate with thumbnail         |
| 71 - 80 | Yellow/brown                           | Too hard to penetrate with thumbnail; loosening in daytime            |

**Conclusions** – Mid June is the time to quantify the likely yield of your maize silage and as consequence your forage stocks for the coming winter. Plant establishment and as a result plant population and weather will both impact on maize yield and quality. The estimates contained within this technical note provide a method and some assumed numbers to help in this exercise. We would urge members to measure plant populations and estimate yields soon.